The first QR code is a revision video The second is solutions to the questions

Product Rule for Counting			Differentiation (Gradients, Tangents, Normals)		
Factorising and Simplifying			Differentiation (Increasing and Decreasing Functions)		
Equations with Indices			Differentiation (Maxima and Minima)		
Domain and Range					
			Differentiation (Perimeter, Area, Volume Problems)		
Piecewise Functions					
		-	Matrix Multiplication		
Equation of a Circle					
			The Identity Matrix		
Limiting Values of					
			Matrix Transformations		
Three Simultaneous					
			Combining Transformations		
Binomial Expansion					
Long Division of Polynomials			Solving Trig Equations		
The Factor Theorem			Trig Identities		
Differentiation (Power Rule)			Harder Trig Equations		

Answer all questions in the spaces provided.

1 A school awards a prize to one student for each of the subjects maths, English and science.

Teachers nominate students and the headteachers picks one winner per subject.
This year there were
5 nominations for maths
4 nominations for English
2 nominations for science

1 (a) How many different ways can the headteacher select the award winners?
\qquad
\qquad
\qquad

Answer \qquad

One student was nominated for both the maths and science prize.
All other students are only nominated for one award.
The headteacher doesn't want any students to receive more than one award.

1 (b) How many different ways can the headteacher select the award winners with no student winning more than one award.
\qquad
\qquad
\qquad
\qquad

Answer

2 Abbie is selecting a new mobile phone.
When choosing the phone configuration there are
4 possible memory sizes
2 possible processor speeds
12 possible colours

2 (a) How many different possible phone configurations are there?
\qquad
\qquad
\qquad

Answer

Abbie's mum Jenny also wants a phone.
Jenny wants her phone to
have either a $32 \mathrm{~GB}, 64 \mathrm{~GB}$ or 128 GB of memory
have the fastest processor possible
be a colour that she likes

2 (b) Jenny calculates that this is 25% of the total possible configurations. How many of the colours does Jenny like?
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

3 Isaac, Jamie, Kezia, Lucy and Miriam are contestants on a gameshow.
The gameshow has four rounds that are music, science, sport and history.
The team must select one player for each round.
A player can be selected for multiple different rounds.

3 (a) How many ways are there of selecting players for the four rounds?
\qquad
\qquad
\qquad

Answer

3 (b) If instead each player can only play one round, how many ways are there of selecting players for the four rounds now?
\qquad
\qquad
\qquad

Answer

4 Here are the birthdates of 5 members of a chess club.

Rees	Jamie	Jack	Luke	Joel
$10^{\text {th }}$	$21^{\text {st }}$	$24^{\text {th }}$	$14^{\text {th }}$	$15^{\text {th }}$

They need to select a 6 digit code number for the lock on their chess equipment.
They do this by selecting three of their birthdates and writing them as a number.
For example if was Rees chosen first, Jamie second and Jack third the code would be 102124

4 (a) How many possible 6 digit code numbers can be made in this way?

Answer

4 (b) How many of 6 digit code numbers that can be made are a multiple of 5 ?
[2 marks]
\qquad
\qquad
\qquad

Answer

4 (c) How many of 6 digit code numbers that can be made are greater than 150000 ?
[2 marks]
\qquad
\qquad
\qquad

Answer

5 Here are six numbered cards.

5 (a) Using all of cards how many different 6 digit numbers can be made?
[2 marks]
\qquad
\qquad

Answer

5 (b) Using the cards how many different 5 digit numbers can be made?
\qquad
\qquad

Answer

5 (c) Using the cards how many different 4 digit numbers can be made that are a multiple of 5 ?
\qquad
\qquad

Answer

5 (d) Using the cards how many different numbers can be made that are between 40000 and 500000

Answer

6 How many integers between 40000 and 90000 can be formed from these digits

$$
\begin{array}{lllll}
3 & 4 & 6 & 8 & 9
\end{array}
$$

with no repetition of any digit?
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

7 How many even integers greater than 500000 can be formed from these digits
$\begin{array}{llllll}1 & 2 & 3 & 5 & 7 & 9\end{array}$
with no repetition of any digit?
\qquad
\qquad
\qquad
\qquad
Answer

8 How many four-digit multiples of 5 are there if the first digit is greater than 3 ?

Abstract

$\begin{array}{llllll}1 & 2 & 3 & 5 & 7 & 9\end{array}$

with no repetition of any digit?
\qquad
\qquad
\qquad
\qquad

Answer

9 How many 5 digit even numbers can be made from these digits

$$
\begin{array}{lllll}
1 & 3 & 6 & 7 & 8
\end{array}
$$

with no repetition of any digit?
\qquad
\qquad
\qquad
\qquad

Answer

10 Here are six numbered cards.

Using five or six of the cards, how many numbers can be made greater than 60000

11 Integers are made using some of the digits 1, 2, 3, 4, 5 and 6.
Each integer made
is greater than 3000
has no digit repeated is a multiple of 5

How many integers can be made?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

12 Integers are made using some of the digits 2, 4, 6, 7, 8, and 9
Each integer made
is greater than 80000
has no digit repeated
is odd
How many integers can be made?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Answer all questions in the spaces provided.

1 (a) Factorise fully $6 p^{2}+15 p^{5}$
\qquad
\qquad

Answer

1 (b) Factorise fully $9 m^{4}+36 m^{2}$
\qquad
\qquad

Answer

1 (c) Factorise fully $2 a^{4} b-a^{3} b^{3}$
[2 marks]

Answer

1 (d) Factorise fully $9 t^{2}-4$
[2 marks]

Answer

2 (a) Factorise fully $4 x^{5}-100 x^{3}$
\qquad
\qquad
\qquad
\qquad

Answer

2 (b) Factorise fully $3 x^{2}+2 x y-y^{2}$
\qquad
\qquad
\qquad
\qquad

Answer

2 (c) Factorise fully $3(x+4)^{5}-(x+4)^{4}$
\qquad
\qquad
\qquad
\qquad

Answer \qquad

3
Factorise fully $x^{4}-8 x^{2}+12$
[3 marks]
\qquad
\qquad L
\qquad

Answer

4 Simplify fully $\frac{6 x-18}{x^{2}-9}$

Answer

5 Simplify fully $\frac{6 x^{4}+3 x^{3}}{4 x^{2}-1}$

6 Simplify fully $\frac{6 x^{2}-2 x y}{4 x y-12 x^{2}}$

Answer

$7 \quad$ Simplify fully $\frac{x^{4}-4 x^{2}}{x^{5}-2 x^{4}}$

Answer

8 Simplify fully $\frac{2 x^{4}-2 x^{3} y}{x^{3}-x y^{2}}$
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad
$9 \quad$ Simplify fully $\frac{4(x-1)^{3}+x(x-1)^{2}}{10 x^{2}-18 x+8}$

Answer

10 Simplify fully $\frac{3 x^{2}-6 x}{x^{4}-16} \div \frac{1}{x^{2}+4}$

Answer all questions in the spaces provided.

1 Solve $\left(4 x^{3}\right)^{\frac{1}{2}}=250$

Answer

2 Solve $4 x^{\frac{1}{3}}-x^{-\frac{1}{3}}=0$

Answer

3 Solve $9 x^{\frac{3}{2}}=\frac{4}{\sqrt{x}}$

4 Solve $\frac{\left(8 x^{1.5}\right)^{2}}{4}=1 \quad$ [4 marks] ${ }^{$| Do not write |
| :---: |
| outside the |
| box |$}$

Answer
$5 \quad$ Solve $9^{x} \times \frac{1}{27}=\left(\frac{1}{3^{x}}\right)^{x}$
\qquad
6 Solve $\sqrt{5^{x}}=0.2 \quad\left[4\right.$ marks] $\begin{array}{l}\text { Do not write } \\ \text { outside the } \\ \text { box }\end{array}$

Answer

7 Solve $16^{x}=\frac{\left(8^{3}\right)^{3}+\left(2^{6}\right)^{4}}{36}$

Answer

10 Solve $125^{3} \times 25^{(x+1)}=5^{20}$
[3 marks]

Answer

11 Solve $27^{4} \times 81^{2 x}=0 . \dot{3}$
[3 marks]

Answer

12 By multiplying both sides of the equation by $x^{\frac{1}{2}}$
Solve $x^{\frac{3}{2}}+20 x^{-\frac{1}{2}}=9 x^{\frac{1}{2}}$
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
You must show your working
\qquad

13 By multiplying both sides of the equation by $x^{\frac{1}{2}}$
Solve $x^{\frac{3}{2}}+24 x^{-\frac{1}{2}}=14 x^{\frac{1}{2}}$
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

14 By multiplying both sides of the equation by $x^{\frac{1}{2}}$
Solve $\quad x^{\frac{3}{2}}+x^{\frac{1}{2}}=12 x^{-\frac{1}{2}} \quad$ for $x>0$
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

15 By multiplying both sides of the equation by $x^{\frac{1}{2}}$
Solve $2 x^{\frac{3}{2}}=3 x^{\frac{1}{2}}+4 x^{-\frac{1}{2}} \quad$ for $x>0$
Give your answer to 3 significant figures.
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

16 By multiplying both sides of the equation by $x^{\frac{1}{3}}$
Solve $x^{\frac{5}{3}}+2 x^{\frac{2}{3}}=15 x^{-\frac{1}{3}}$
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad
17 By multiplying both sides of the equation by $x^{\frac{1}{3}}$
Solve $x^{\frac{5}{3}}+30 x^{-\frac{1}{3}}=11 x^{\frac{2}{3}}$
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

18 By multiplying both sides of the equation by $x^{\frac{1}{5}}$
Solve $x^{\frac{9}{5}}=7 x^{\frac{4}{5}}-6 x^{-\frac{1}{5}}$
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad
19 By multiplying both sides of the equation by $x^{\frac{2}{5}}$
Solve $x^{\frac{8}{5}}+12 x^{-\frac{2}{5}}=8 x^{\frac{3}{5}}$
You must show your working.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

20 By expanding and simplifying, solve

$$
\left(2 x^{-\frac{1}{2}}+x^{\frac{3}{2}}\right)^{2}=9+x^{3}
$$

Give your answers to 3 significant figures.
\qquad

Answer \qquad

Answer all questions in the spaces provided.

1 (a) The function f is given by $\mathrm{f}(x)=x^{2}+2$ with domain $5<x<11$
Work out the range of the function.
\qquad
\qquad

Answer

1 (b) The function g is given by $g(x)=\sqrt{x-4}$
Give a reason why $x>0$ is not a suitable domain for $\mathrm{g}(x)$
\qquad
\qquad
\qquad

1 (c) The function h is given by $\mathrm{h}(x)=4 x+2$
The range is $-18<\mathrm{h}(x)<10$
Work out the domain of the function.

Answer

2 (a) The function f is given by $\mathrm{f}(x)=2-5 x$ with domain $-3<x<5$
Work out the range of the function.
\qquad
\qquad

Answer

\qquad

2 (b) The function g is given by $g(x)=\frac{x+1}{x-3}$
Give a reason why $x>0$ is not a suitable domain for $\mathrm{g}(x)$
\qquad
\qquad
\qquad

2 (c) The function h is given by $\mathrm{h}(x)=2 x^{3}$
The range is $\quad-250<h(x)<16$
Work out the domain of the function.

3 (a) The function f is given by $\mathrm{f}(x)=\frac{36}{x}$
The range is $1.5<\mathrm{f}(x)<12$
Work out the domain of the function.
\qquad
\qquad

Answer

3 (b) The function g is given by $\mathrm{g}(x)=\frac{100}{2 x-3}$
Write down the value of x for which the function not defined.
[1 mark]

Answer

3 (c) The function h is given by $\mathrm{h}(x)=\sin (x)+1 \quad$ for all x
Write down the range of the function.

Answer

4 (a) The function f is given by $\mathrm{f}(x)=2^{x}-1$ for all x
Work out the range of the function.
\qquad
\qquad

Answer \qquad

4 (b) The function g is given by $\mathrm{g}(x)=x^{4} \quad$ with domain $\quad x<-3$
Work out the range of the function.

Answer

4 (c) The function h is given by $\mathrm{h}(x)=3 x^{2}$
The range is $0 \leq h(x) \leq 300$
Work out the domain of the function.
$5 \quad$ The function f is given by $\mathrm{f}(x)=\cos (x)$ with domain $30^{\circ}<x<60^{\circ}$
Work out the range of the function.
\qquad
\qquad

Answer \qquad
$6 \quad$ The function g is given by $g(x)=x^{2}+4 x-3 \quad$ for all x
Work out the range of the function.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

7 (a) $\quad f(x)=x^{3}-9 x^{2}+24 x-15$
$y=\mathrm{f}(x) \quad$ has two stationary points.
Work out the coordinates of the two stationary points and determine their nature.
[6 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stationary Point (\quad,) Nature

Stationary Point (\quad, \quad) Nature

7 (b) $\mathrm{f}(x)$ has domain $0<x<3$
Work out the range of the function.
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Answer all questions in the spaces provided.

1 A function f is given by

$$
\begin{aligned}
f(x) & =2 x-3 & & 0 \leq x<3 \\
& =6-x & & 3 \leq x<7 \\
& =-1 & & 7 \leq x \leq 10
\end{aligned}
$$

Draw a sketch of $\quad y=\mathrm{f}(x) \quad$ for values of x from 0 to 10 .
[4 marks]

2 A function f is given by

$$
\begin{aligned}
f(x) & =5-0.5 x & & 0 \leq x<4 \\
& =-4 x+19 & & 4 \leq x<6 \\
& =x-11 & & 6 \leq x \leq 10
\end{aligned}
$$

Draw a sketch of $\quad y=\mathrm{f}(x) \quad$ for values of x from 0 to 10 .

3 A function f is given by

$$
\begin{aligned}
f(x) & =x^{2} & & 0 \leq x<2 \\
& =6-x & & 2 \leq x<4 \\
& =4-0.5 x & & 4 \leq x \leq 10
\end{aligned}
$$

Draw a sketch of $\quad y=\mathrm{f}(x) \quad$ for values of x from 0 to 10 .

4 A function f is given by

$$
\begin{aligned}
f(x) & =5-x^{2} & & 0 \leq x<3 \\
& =3 x-13 & & 3 \leq x<6 \\
& =5 & & 6 \leq x \leq 10
\end{aligned}
$$

Draw a sketch of $\quad y=\mathrm{f}(x) \quad$ for values of x from 0 to 10.

5 A function f is given by

$$
\begin{aligned}
f(x) & =x+2 & & 0 \leq x<3 \\
& =x^{2}-12 x+32 & & 3 \leq x<8 \\
& =12-\frac{3}{2} x & & 8 \leq x \leq 10
\end{aligned}
$$

Draw a sketch of $\quad y=\mathrm{f}(x) \quad$ for values of x from 0 to 10 .

Here is a graph of $\quad y=\mathrm{f}(x)$

Define $\mathrm{f}(x)$, stating clearly the domain for each part.

$$
\mathrm{f}(x)=
$$

\qquad $\leq x<$ \qquad
\qquad
\qquad
\qquad
\qquad $\leq x \leq$ \qquad

$\overline{7}$

Turn over

$7 \quad$ Here is a graph of $\quad y=\mathrm{f}(x)$

Define $\mathrm{f}(x)$, stating clearly the domain for each part.

$$
\mathrm{f}(x)=\quad \quad \leq x<
$$

\qquad
\qquad $\leq x \leq$ \qquad

8
$\mathrm{f}(x)=a x+b$
$0 \leq x<2$
$=(x-c)(x-d)$
$2 \leq x<6$
$=e$
$6 \leq x \leq 10$
a, b, c, d and $e \quad$ are constants with $\quad c<d$
A sketch of $y=\mathrm{f}(x)$ is shown．

The point P is where the function intersects the y－axis．
The line $y=P$ is tangential to the curved part of the graph．
Find the values of a, b, c, d and e ．
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
a=\quad c=\quad d=\quad e=
$$

9 A function f is given by

$$
\begin{aligned}
\mathrm{f}(x) & =\sin \left(x^{\circ}\right) & 0^{\circ} \leq x<180^{\circ} \\
& =0 & 180^{\circ} \leq x<270^{\circ} \\
& =\cos \left(x^{\circ}\right) & 270^{\circ} \leq x \leq 360^{\circ}
\end{aligned}
$$

9 (a) Draw a sketch of $y=\mathrm{f}(x)$ for values of x from 0° to 360°

9 (b) $\quad 0<k<1$

How many solutions are there to the equation $\mathrm{f}(x)=k$

Answer

10

| $\mathrm{f}(x)$ | $=2 x-5$ | $0 \leq x<10$ |
| ---: | :--- | ---: | :--- |
| | $=a$ | $10 \leq x<15$ |
| | $=30-x$ | $x \geq 15$ |

A sketch of $y=\mathrm{f}(x)$ is shown.

10 (a) Work out the value of a
\qquad
\qquad

$$
a=
$$

\qquad

10 (b) How many times bigger is the area of trapezium P than triangle Q ?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

\qquad

1 The equation of a circle is $x^{2}+y^{2}=16$
1 (a) Write down the coordinates of the centre of the circle.

1 (b) Write down the radius of the circle.

Answer

2 The equation of a circle is $(x-3)^{2}+(y+2)^{2}=5$
2 (a) Write down the coordinates of the centre of the circle.

2 (b) Write down the radius of the circle.

Answer

3 Write down the equation of a circle, centre $(-3,1)$ and radius $\sqrt{10}$.

Answer
$4 \quad$ Write down the equation of a circle, centre $(0,6)$ and radius $\frac{1}{2}$

Answer

5 A circle has centre $(1,-4)$ and radius 5 .
Show that the circle passes through point $P(4,-8)$.
$6 \quad$ A circle, centre $(1,3)$ passes through the point $P(9,9)$
Work out the equation of the circle.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad
$7 \quad A B$ is the diameter of a circle.
A is $(-5,-1)$ and B is $(5,23)$
Work out the equation of the circle.
\qquad

Answer
$8 \quad$ Circles C_{1} and C_{2} both have the same centre $(1,-2)$
The radius of C_{1} is 10 .
The difference in the areas of the two circles is 96π
Work out two possible equations for the circle C_{2}
Workouttwo
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad
and

Answer
$9 \quad$ The circle, centre C, passes through the points $A(4,13)$ and $B(10,13)$

The area of triangle $A B C$ is 12 units 2
Work out the equation of the circle.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

10 The circle with equation $(x-3)^{2}+(y-3)^{2}=68$ passes through the point $P(5,-5)$
Work out the equation of the tangent to the circle at the point P.
[4 marks]

Answer

11 The circle with equation $(x-4)^{2}+(y+1)^{2}=13$ passes through the point $Q(6,-4)$
Work out the equation of the tangent to the circle at the point Q.
[4 marks]

Answer

Answer all questions in the spaces provided.

1 The nth term of a sequence is $\frac{2 n-3}{n+4}$

1 (a) A term in the sequence has the value $\frac{3}{2}$
Work out the value of n.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

1 (b) Write down the limiting value of the sequence as $\mathrm{n} \rightarrow \infty$
\qquad
\qquad
\qquad
\qquad

Answer

2 The nth term of a sequence is $\frac{7 n}{10 n+6}$

2 (a) A term in the sequence has the value $\frac{2}{3}$
Work out the value of n.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

2 (b) Write down the limiting value of the sequence as $\mathrm{n} \rightarrow \infty$
\qquad
\qquad
\qquad
\qquad

Answer \qquad

3 The nth term of a sequence is $\frac{14 n-21}{4 n}$

3 (a) The $k^{\text {th }}$ term of the sequence is the first term that has a value greater than 3.

Work out the value of k.
[2 marks]
\qquad L_
\qquad
\qquad
\qquad
\qquad

$$
k=
$$

3 (b) Write down the limiting value of the sequence as $\mathrm{n} \rightarrow \infty$
\qquad
\qquad
\qquad
\qquad

Answer

4 The nth term of a sequence is $\frac{50-6 n}{3 n}$

4 (a) The $k^{\text {th }}$ term of the sequence is the first negative term.

Work out the value of k.
[2 marks]
\qquad L_ـ_
\qquad
\qquad
\qquad
\qquad

$$
k=
$$

4 (b) Write down the limiting value of the sequence as $\mathrm{n} \rightarrow \infty$
\qquad
\qquad
\qquad
\qquad

Answer \qquad

5 The nth term of a sequence is $\frac{n^{2}+20}{3 n^{2}}$

5 (a) A term in the sequence has the value $\frac{2}{5}$
Work out the value of n.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

5 (b) Write down the limiting value of the sequence as $\mathrm{n} \rightarrow \infty$
\qquad
\qquad
\qquad
\qquad

Answer

6 The nth term of a sequence is $\frac{4 n^{2}+45}{5 n^{2}-30}$

6 (a) A term in the sequence has the value 0.9

Work out the value of n.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

6 (b) Write down the limiting value of the sequence as $\mathrm{n} \rightarrow \infty$
\qquad
\qquad
\qquad
\qquad

Answer
$7 \quad$ The nth term of a sequence is $\frac{2 n^{2}}{3 n^{2}-9}$

7 (a) Show that the difference between the first two terms of the sequence is 3.
\qquad
\qquad
\qquad L_
\qquad
\qquad
\qquad
\qquad
\qquad

7 (b) Write down the limiting value of the sequence as $\mathrm{n} \rightarrow \infty$
\qquad
\qquad
\qquad
\qquad

Answer

8 The nth term of a sequence is $\frac{20-6 n^{2}}{a n^{2}+35}$

8 (a) The limiting value of the sequence as $n \rightarrow \infty$ is equal to $-\frac{2}{3}$
Write down the value of a.

$$
a=
$$

\qquad

8 (b) A term in the sequence has the value -0.5

Work out the value of n.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

9 The nth term of a sequence is $\frac{4 n^{2}+6}{3 n^{2}+2 n}$

9 (a) Two terms in the sequence have the value $\frac{5}{4}$
Work out the both possible values of n.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

9 (b) Write down the limiting value of the sequence as $\mathrm{n} \rightarrow \infty$
\qquad
\qquad
\qquad
\qquad

Answer

10 The nth term of a sequence is $\frac{3 n+3}{2 n-1}-\frac{2 n^{2}+n}{3 n^{2}-8}$

10 (a) Work out the value of the second term of the sequence
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

10 (b) Work out the limiting value of the sequence as $\mathrm{n} \rightarrow \infty$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Answer all questions in the spaces provided.

1 Solve the simultaneous equations

$$
\begin{aligned}
4 a+2 b+c & =25 \\
a+3 b-2 c & =9 \\
2 a-b+3 c & =11
\end{aligned}
$$

Do not use trial and improvement.
You must show your working.

$$
a=\quad b=\quad c=
$$

2 Solve the simultaneous equations

$$
\begin{aligned}
& 9 a-b-2 c=8 \\
& 4 a+b+3 c=4 \\
& 2 a-4 b-c=-9
\end{aligned}
$$

Do not use trial and improvement.
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad L
\qquad
\qquad
\qquad
\qquad
\qquad工
\qquad

$$
a=\quad b=\quad c=
$$

3 Solve the simultaneous equations

$$
\begin{aligned}
3 a+2 b+2 c & =24 \\
2 a-6 b+3 c & =29 \\
a+3 b+4 c & =0
\end{aligned}
$$

Do not use trial and improvement.
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad L
\qquad L
\qquad
\qquad
\qquad \longrightarrow _

$$
a=\quad b=\quad c=
$$

4 Solve the simultaneous equations

$$
\begin{aligned}
2 a-2 b-4 c & =2 \\
a-4 b+2 c & =-14 \\
3 a-3 b-5 c & =0
\end{aligned}
$$

Do not use trial and improvement.
You must show your working.
\qquad
\qquad工
\qquad

$$
a=\quad b=\quad c=
$$

5 Solve the simultaneous equations

$$
\begin{aligned}
5 a+2 b-c & =19 \\
10 a-3 b-6 c & =79 \\
3 b-2 c & =1
\end{aligned}
$$

Do not use trial and improvement.
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad L
\qquad L
\qquad
\qquad
\qquad工_ـ_

$$
a=\quad b=\quad c=
$$

6 Solve the simultaneous equations

$$
\begin{aligned}
& 4 a-b-c=-7 \\
& 8 a+5 b+2 c=27 \\
& 6 a+2 b-3 c=17
\end{aligned}
$$

Do not use trial and improvement.
You must show your working.
\qquad
\qquad \longrightarrow
\qquad

$$
a=\quad b=\quad c=
$$

Do not use trial and improvement.

You must show your workg.

Answer all questions in the spaces provided.
$1 \quad$ Expand and simplify fully $(3+x)^{4}$
\qquad

Answer

2 Expand and simplify fully $(x-2)^{6}$

Answer

3 Expand and simplify fully $(1+2 x)^{5}$

4 Expand and simplify fully $(1-3 x)^{4}$

Answer

8 The coefficient of x^{2} in the expansion of $(1+a x)^{7}$ is 189.
Work out the two possible values of a.
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad

Answer and
$9 \quad$ The coefficient of x^{5} in the expansion of $(b-x)^{6}$ is -120.
Work out the value of b.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

10 The coefficient of x^{3} in the expansion of $(2 c+x)^{5}$ is 360 .
Work out the two possible values of c.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
and

11 The coefficient of x^{3} in the expansion of $(2+d x)^{6}$ is 20000.
Work out the value of d.
[3 marks]

12 In the expansion of $(a+b x)^{3}$
the coefficient of x is -150
the coefficient of x^{2} is 60

Work out the values of a and b.
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $a=$ $b=$

Answer all questions in the spaces provided.

1 Use long division to find the result of $\left(x^{3}+9 x^{2}+26 x+24\right) \div(x+3)$

Answer

2 Use long division to find the result of $\left(x^{3}+8 x^{2}+17 x+10\right) \div(x+5)$
[2 marks]

Answer

3 Use long division to find the result of $\left(x^{3}+5 x^{2}+2 x-8\right) \div(x+2)$

Answer

4 Use long division to find the result of $\left(x^{3}-4 x^{2}+x+6\right) \div(x-3)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

5 Use long division to find the result of $\left(2 x^{3}+7 x^{2}-17 x-10\right) \div(2 x+1)$

Answer

6 Use long division to find the result of $\left(3 x^{3}-4 x^{2}-13 x-6\right) \div(3 x+2)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

7 Use long division to find the result of $\left(2 x^{3}+9 x^{2}-11 x-30\right) \div(x+5)$
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

8
Use long division to find the result of $\left(4 x^{3}+16 x^{2}-x-4\right) \div(2 x-1)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
$9(x+3)$ divides into $\left(x^{3}+8 x^{2}+k x+12\right)$ without remainder.
Find the value of k.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
k=
$$

\qquad

10 Use long division to find the result of $\left(2 x^{4}-10 x^{2}+3 x+2\right) \div(x-2)$
\qquad \longrightarrow
\qquad L_
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

Answer all questions in the spaces provided.
$1 \mathrm{f}(x)=x^{3}+5 x^{2}+2 x-8$
1 (a) Use the factor theorem to show that $(x+4)$ is a factor of $\mathrm{f}(x)$.
[2 marks]
ـ
\qquad
\qquad
\qquad
\qquad

1 (b) Hence, fully factorise $\mathrm{f}(x)$.

Answer
$2 \mathrm{f}(x)=2 x^{3}+13 x^{2}+13 x-10$

2 (a) Use the factor theorem to show that $(2 x-1)$ is a factor of $f(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad

2 (b) Hence, fully factorise $\mathrm{f}(x)$.
\qquad工
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad

Answer \qquad
$3 \mathrm{f}(x)=x^{3}-5 x^{2}-2 x+24$

3 (a) Use the factor theorem to show that $(x+2)$ is a factor of $\mathrm{f}(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad

3 (b) Hence solve $\mathrm{f}(x)=0$

Answer
$4 \mathrm{f}(x)=4 x^{3}-11 x^{2}+5 x+2$

4 （a）Use the factor theorem to show that $(4 x+1) \quad$ is a factor of $\mathrm{f}(x)$ ．
\qquad
\qquad
\qquad
\qquad
\qquad

4 （b）Hence solve $\mathrm{f}(x)=0$
\qquad工
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad
$5 \quad \mathrm{f}(x)=3 x^{3}-10 x^{2}+4 x+8$

5 (a) Use the factor theorem to show that $(x-2)$ is a factor of $\mathrm{f}(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad

5 (b) Hence solve $\mathrm{f}(x)=0$

Answer
$6 \quad \mathrm{f}(x)=x^{3}+a x^{2}-21 x-18$

6 （a）$\quad(x+3)$ is a factor of $\mathrm{f}(x)$ ．Find the value of a ．
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
a=
$$

\qquad

6 （b）Hence，fully factorise $\mathrm{f}(x)$ ．
\qquad

Answer

Turn over
$7 \quad$ A sketch of the graph $y=x^{3}-x^{2}+p x+q$ is shown.

7 (a) Write down the value of q.

$$
q=
$$

\qquad

7 (b) Work out the value of p.
\qquad
\qquad
\qquad

$$
p=
$$

7 (c) The graph touches the x-axis at the point C.
Work out the x coordinate of the point C.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
$8 \quad \mathrm{f}(x)=2 x^{3}+11 x^{2}+a x+b$

8 (a) $\quad(x-2)$ and $(x+6)$ are factors of $\mathrm{f}(x)$. Find the values of a and b.

$$
a=\square \quad b=
$$

8 (b) Solve $\mathrm{f}(x)=0$
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

Answer all questions in the spaces provided.
$1 \quad y=2 x^{3}+3 x^{2}+4 x+1$
Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\frac{\mathrm{d} y}{\mathrm{~d} x}=$
$2 y=5 x^{4}-x^{2}+x-4$
Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$
[2 marks]
$3 y=20-4 x^{-2}+\frac{x}{4}$
Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=
$$

$4 y=\frac{2}{x^{3}}-\frac{3}{x}$

Work out an expression for the rate of change of y with respect to x
\qquad $工$ \longrightarrow
\qquad
\qquad
\qquad
\qquad Answer
$5 \quad y=(2 x+1)(x-3)$
Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=
$$

$6 y=x^{2}\left(2 x^{2}-3\right)$

Work out an expression for the rate of change of y with respect to x
[3 marks]
\qquad L
\qquad
\qquad工
\qquad
\qquad

Answer
$7 \quad y=\frac{3 x+5 x^{2}}{x^{2}}$
Work out $\frac{d y}{d x}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
dx
$\underbrace{\frac{d y}{d x}=}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=
$$

$8 \quad y=\frac{6+8 x^{3}-x^{2}}{x^{3}}$
Work out $\frac{d y}{d x}$
[4 marks]
\qquad L $\underline{\longrightarrow}$
\qquad L $\underline{\longrightarrow}$
\qquad

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=
$$

$9 \quad y=(x+1)(x+2)(x+3)$
Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=
$$

Answer all questions in the spaces provided.

1 Work out the gradient of the curve $y=x^{3}-5 x^{2}+7 x+9$ at the point where $x=3$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

2 Work out the gradient of the curve $y=x^{4}+4 x$ at the point where $x=-2$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

3 Work out the gradient of the curve $y=8-\frac{3}{x}$ at the point where $x=2$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

4 Work out the gradient of the curve $y=\left(x^{2}+1\right)^{2}$ at the point where $x=1$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
\qquad
$5 y=3 x^{2}-5 x+1$
Work out the value of x at which the rate of change of y with respect to x is -2
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
$6 \quad y=3 x-\frac{4}{x^{2}}$
Work out the value of x at which the rate of change of y with respect to x is 2
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
$7 y=2 x^{3}-3 x^{2}-12 x$
Work out the values of x at which the rate of change of y with respect to x is 24
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

$8 y=6 x+\frac{4}{x}$
Work out the values of x at which the rate of change of y with respect to x is -3
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
$9 y=a x^{3}-4 x$
At $x=1$ the rate of change of y with respect to x is 17
Work out the value of a.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
$10 y=x^{2}-\frac{a}{x}$
At $x=5$ the rate of change of y with respect to x is 16
Work out the value of a.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

11 A curve has equation $y=x^{3}+3 x$
Work out the equation of the tangent to the curve at the point $(2,14)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

12 A curve has equation $y=x^{5}-2 x$
Work out the equation of the normal to the curve at the point (1, -1) [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad
$13 \quad P$ is the point on the curve $y=\frac{x^{2}+7}{4}$ where $x=1$
13 (a) Work out the equation of the normal to the curve at P.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

13 (b) The normal at P also intersects the curve at Q.
Work out the coordinates of Q.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
Q=(
$$

Answer all questions in the spaces provided.

1 Work out the values of x for which $f(x)=3 x^{2}-4 x$ is a decreasing function. Give your answer as an inequality.
\qquad
\qquad
\qquad
\qquad
\qquad L
\qquad
\qquad

Answer

2 Work out the values of x for which $f(x)=\frac{1}{3} x^{3}+2 x^{2}-12 x$ is a decreasing function. Give your answer as an inequality.
\qquad
\qquad
\qquad
\qquad L L
\qquad
\qquad

Answer

3 Work out the values of x for which $\mathrm{f}(x)=10 x-x^{2}$ is an increasing function. Give your answer as an inequality.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

4 Work out the values of x for which $f(x)=x^{3}+4 x^{2}-3 x$ is an increasing function. Give your answer as an inequality.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
$5 \quad \mathrm{f}(x)=\frac{1}{3} x^{3}-3 x^{2}+11 x$
Use differentiation to show that $\mathrm{f}(x)$ is an increasing function for all values of x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$6 \quad \mathrm{f}(x)=3 x^{2}-10 x-\frac{1}{3} x^{3}$
Use differentiation to show that $\mathrm{f}(x)$ is an decreasing function for all values of x. [3 marks]
\qquad L
\qquad
\qquad L
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$7 \quad \mathrm{f}(x)=x^{3}+3 x^{2}+7 x$
Use differentiation to show that $\mathrm{f}(x)$ is an increasing function for all values of x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$8 \mathrm{f}(x)=-3 x^{3}+18 x^{2}-38 x$
Use differentiation to show that $\mathrm{f}(x)$ is an decreasing function for all values of x.
[4 marks]
\qquad
\qquad
\qquad
\qquad工
\qquad
\qquad
\qquad
\qquad

Answer all questions in the spaces provided.
$1 y=2 x^{3}-4 x^{2}$
Work out $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=
$$

$2 y=\frac{2}{x}+9 x$
Work out $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$
[3 marks]
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=$
$3 y=x^{5}+\frac{4}{x}$
Work out the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=2$
\qquad L
\qquad L
\qquad
\qquad
\qquad
\qquad

Answer

4 The curve $y=x^{4}-32 x$ has one stationary point.
Work out the coordinates of the stationary point.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Answer (__)

Stationary Point)

$6 y=\frac{18}{x}+2 x$
Show that y has a minimum value when $x=3$

7 The curve $y=x^{3}+12 x^{2}+36 x+1$ has two stationary points.
Work out the coordinates of the two stationary points and determine their nature.
[6 marks]
\qquad
Stationary Point (\square, \square) Nature $\quad \square$
Stationary Point $(\square \quad$) Nature

Answer all questions in the spaces provided.

1 This shape is made from two rectangles.
All dimensions are in centimetres.
$25 x$

The perimeter of the shape is 298 cm
1 (a) Show that $y=149-33 x$
\qquad
\qquad
\qquad
\qquad
\qquad

The area of the shape is $A \mathrm{~cm}^{2}$
1 (b) Show that $A=3725 x-745 x^{2}$
[2 marks]

1 (c) Use differentiation to work out the maximum value of A as x varies. [3 marks]
\qquad

Answer

Turn over

2 This shape is made from a square and a rectangle.
All dimensions are in centimetres.

Not drawn accurately

The perimeter of the shape is 220 cm
2 (a) Show that $y=110-10 x$

The area of the shape is $A \mathrm{~cm}^{2}$
2 (b) Show that $A=660 x-44 x^{2}$

2 (c) Use differentiation to work out the maximum value of A as x varies. [3 marks]

Answer

Turn over

3 This lengths of a cuboid are $5 \mathrm{~cm}, 2 x \mathrm{~cm}$ and $(9-5 x) \mathrm{cm}$

3 (a) Show that the volume of the cuboid, V, is given by $V=90 x-50 x^{2}$
\qquad
\qquad
\qquad
\qquad
\qquad

3 (b) Use differentiation to work out the maximum value of V as x varies. [3 marks]
\qquad
\qquad
\qquad \longrightarrow
\qquad -
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

4 Here is a triangular prism.

Not drawn accurately

4 (a) Show that the volume of the prism, V, is given by $V=54 x-6 x^{2}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4 (b) Use differentiation to work out the maximum value of V as x varies.
\qquad

Answer

Answer all questions in the spaces provided.

Answer all questions in the spaces provided.		
1	Work out $6\binom{-2}{5}$	[1 mark]
Answer		
2	Work out $-4\binom{8}{-1}$	[1 mark]
	Answer	
3	Work out $3\left(\begin{array}{ll}5 & 1 \\ 2 & 0\end{array}\right)$	[1 mark]
4	Answer	
	Work out -4($\left.\begin{array}{rr}6 & -2 \\ -2 & 4\end{array}\right)$	[1 mark]
	Answer	

1 Work out $6\binom{-2}{5}$

2 Work out -4 $\binom{8}{-1}$

3 Work out $3\left(\begin{array}{ll}5 & 1 \\ 2 & 0\end{array}\right)$

4 Work out $-4\left(\begin{array}{rr}6 & -2 \\ -2 & 4\end{array}\right)$

5	Work out $\left(\begin{array}{ll}4 & 0 \\ 2 & 1\end{array}\right)\binom{1}{5}$	[1 mark]
Answer		
6	Work out $\left(\begin{array}{cc}-3 & 1 \\ 6 & -2\end{array}\right)\binom{2}{-1}$	[1 mark]
Answer		
7	Work out $\left(\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 4 & 2\end{array}\right)$	[2 marks]

\qquad

8 Work out $\left(\begin{array}{rr}2 & -4 \\ 0 & 3\end{array}\right)\left(\begin{array}{ll}1 & -1 \\ 4 & -3\end{array}\right)$

Answer

9 Work out $\left(\begin{array}{ll}3 & 5 \\ 4 & 0\end{array}\right)\left(\begin{array}{cc}1 & -1 \\ 2 & 2\end{array}\right)\binom{3}{-2}$

Answer

10 Work out $5\left(\begin{array}{ll}-2 & 4 \\ -3 & 0\end{array}\right)\binom{1}{5}$
\qquad

11 Work out $3\left(\begin{array}{rr}0 & 3 \\ -1 & 0\end{array}\right)\left(\begin{array}{rr}6 & 1 \\ -2 & -1\end{array}\right)$
$\mathbf{A}=\left(\begin{array}{rr}5 & 2 \\ 3 & -3\end{array}\right)$
$\mathbf{B}=\binom{-1}{0}$
$\mathbf{C}=\left(\begin{array}{ll}0 & 1 \\ 3 & 2\end{array}\right)$

12 (a) Work out AB

Answer \qquad

12 (b) Work out 2AC

12 (c) Work out \mathbf{C}^{2}

12 (d) By finding AC and CA, show that matrix multiplication is not commutative.
[5 marks]

13 Work out $\quad\left(\begin{array}{cc}\sqrt{3} & 1 \\ 1 & \sqrt{2}\end{array}\right)\left(\begin{array}{cc}2 & \sqrt{3} \\ 0 & 1\end{array}\right)$

Answer \qquad

14 Work out $\quad\left(\begin{array}{cc}a & 4 \\ a^{2} & a\end{array}\right)\left(\begin{array}{cc}2 & 4 a^{2} \\ a & -a^{3}\end{array}\right)$
Fully simplify your answer.
$15 a\left(\begin{array}{rr}4 & 1 \\ 0 & -2\end{array}\right)\binom{b}{-3}=\binom{-9}{9}$

Work out the values of a and b ．

$$
a=
$$

\qquad
\qquad
$16\left(\begin{array}{ll}0 & c \\ d & d\end{array}\right)\binom{d}{3}=\binom{-12}{10}$

Work out the values of c and d ．

$$
c=
$$

$d=$ \qquad and $\quad d=$ \qquad

17
$A=\left(\begin{array}{ll}3 & 4 \\ 3 & 1\end{array}\right)$
$\mathbf{B}=\left(\begin{array}{ll}1 & x \\ 3 & 1\end{array}\right)$
$\mathbf{C}=\left(\begin{array}{ll}4 & 2 \\ 2 & 0\end{array}\right)$
$\mathbf{A B}=k \mathbf{C}^{2}$
Work out the values of k and x.
$18 \quad\left(\begin{array}{cc}2 & b \\ a & 3 b\end{array}\right)\binom{a}{1}=\binom{8}{19}$

Work out two pairs of values of a and b.

$$
\begin{array}{ll}
a=\square & b= \\
a= & b= \\
\hline
\end{array}
$$

1 Show that $\left(\begin{array}{rr}2 & -1 \\ 4 & 3\end{array}\right)\left(\begin{array}{cc}6 & 2 \\ -8 & 4\end{array}\right)=k I$
where k is a constant and I is the identity matrix.
$2 \quad \mathbf{A}=\left(\begin{array}{cc}0 & -6 \\ 4 & 8\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{cc}1 & b \\ a & 0\end{array}\right)$
$\mathbf{A B}=\mathbf{3 I} \quad$ where \mathbf{I} is the identity matrix.
Work out the values of a and b.

$$
a=\square \quad b=
$$

$3 \quad \mathbf{A}=\left(\begin{array}{cc}a+1 & b \\ 2 b & a-3\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{cc}3 & -2 \\ -4 & 5\end{array}\right)$
$A B=14 I$
where I is the identity matrix.
Work out the values of a and b.

$$
a=
$$

$b=$ \qquad
$4 \quad \mathbf{A}=\left(\begin{array}{rr}-2 & 2 \\ 2 & 0\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ll}a & a \\ a & b\end{array}\right)$
$A^{2} B=I$
where I is the identity matrix.
Work out the values of a and b.
\qquad
$5 \quad \mathbf{M}=\left(\begin{array}{cc}\sqrt{12} & 4 \\ 0 & \sqrt{8}\end{array}\right) \quad \mathbf{N}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
$\mathbf{M N}=\sqrt{6} \mathbf{I} \quad$ where \mathbf{I} is the identity matrix.
Work out the values of a, b, c and d.
$a=$ \qquad $b=$ \qquad $c=$ \qquad $d=$
\qquad

1 Write down the matrix for each of the following transformations

1 (a) A rotation 90° clockwise about the origin.

Answer \qquad

1 (b) A reflection in the x-axis.

Answer \qquad
1 (c) An enlargement, scale factor 5, centre the origin.

Answer \qquad
1 (d) A rotation 180° about the origin.

Answer \qquad

1 (e) A reflection in the line $y=-x$
$2 \quad \mathbf{A}=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$

2 (a) The point $P(1,1)$ is transformed by the matrix A .
Work out the coordinates of the image P^{\prime}.
$P^{\prime}=$

2 (b) The point $Q(x, y)$ is transformed by the matrix A^{2}
The image Q ' has coordinates $(0,-1)$
Work out the values of x and y.

$$
x=
$$

\qquad $y=$ \qquad

3 (a) $\quad A(1,0), B(1,1)$ and $C(0,1)$ are vertices of the unit square $O A B C$.
The square is mapped to $O A^{\prime} B^{\prime} C^{\prime}$ under the transformation matrix $\mathbf{M}=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$
Work out the coordinates of A^{\prime}, B^{\prime} and C^{\prime}.
$A^{\prime}=$ \qquad $B^{\prime}=$ $C^{\prime}=$

3 (b) Describe fully the transformation represented by matrix M.

4 The unit square $O A B C$ is transformed by the matrix $\left(\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right)$ to the square $O^{\prime} A^{\prime} B^{\prime} C^{\prime}$ The diagonal of square $O^{\prime} A B^{\prime} C^{\prime}$ ' has length $\sqrt{50}$

$$
k=\quad \text { or } k=
$$

\qquad
$5 \quad \mathbf{B}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$

The points $M(1,5)$ and $N(3,3)$ are transformed by matrix B to points M^{\prime} and N^{\prime}

5 (a) Work out the length of line $M^{\prime} N^{\prime}$ giving your answer in the form $a \sqrt{b}$

Answer \qquad

5 (b) Circle the geometric shape formed by MNN'M'

Parallelogram

Rhombus
Trapezium
Kite

1 (a) $\mathbf{A}=\left(\begin{array}{rr}-2 & 0 \\ 0 & -2\end{array}\right)$

Describe geometrically the single transformation represented by \mathbf{A}

Answer \qquad
\qquad

1 (b) $\mathbf{A}=\left(\begin{array}{rr}-2 & 0 \\ 0 & -2\end{array}\right)$

Describe geometrically the single transformation represented by $\mathbf{A}^{\mathbf{2}}$

Answer \qquad

2 (a) $\quad \mathbf{P}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right) \quad \mathbf{Q}=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$

Point A has coordinates $(0,1)$
A is transformed by the matrix $\mathbf{P Q}$ to the point A^{\prime}
Find the coordinates of A^{\prime}

$$
A^{\prime}=(\square)
$$

2 (b) Describe geometrically the single transformation represented by PQ

Answer \qquad
\qquad

3 Here are three transformations in the $x-y$ plane.
A: Rotation through 90° clockwise about the origin.
B : Reflection in the line $y=x$
C: Transformation A followed by transformation B.
Use matrix multiplication to show that C is equivalent to a single reflection.

4 Here are two transformations in the $x-y$ plane.
A: Rotation through 180° clockwise about the origin.
B: Reflection in the line $y=0$
4 (a) Use matrix multiplication to find a single matrix \mathbf{M} that represents transformation A followed by transformation B

4 (b) Describe geometrically the single transformation represented by \mathbf{M}

Answer \qquad
\qquad

5 Here are two transformations in the $x-y$ plane.
A: Rotation through 90° anticlockwise about the origin.
B: Enlargement, scale factor 3, centre the origin.
The point P is transformed to P^{\prime} by transformation A followed by transformation B .
The coordinates of P^{\prime} are $(0,3)$.
Find the coordinates of P

6 Use matrix multiplication to show that three successive rotations, 90° clockwise about the origin is equivalent to one rotation, 90° anticlockwise about the origin.

Answer all questions in the spaces provided.

1 Solve $\cos x=0.5$ for $0^{\circ} \leq x \leq 360^{\circ}$
\qquad
\qquad
\qquad
\qquad

Answer

2 Solve $\sin x=\frac{\sqrt{3}}{2} \quad$ for $0^{\circ} \leq x \leq 360^{\circ}$

Answer

3
Solve $\quad \tan x=1 \quad$ for $0^{\circ} \leq x \leq 360^{\circ}$
[2 marks]

Answer

Answer \qquad

5 Solve $\sin x=0.9 \quad$ for $0^{\circ} \leq x \leq 360^{\circ}$
[2 marks]
\qquad
\qquad
\qquad
\qquad

Answer \qquad

6 Solve $\tan x=2.2$ for $0^{\circ} \leq x \leq 360^{\circ}$
\qquad
\qquad
\qquad
\qquad

Answer \qquad

7 Solve $\cos x=-0.3$ for $0^{\circ} \leq x \leq 360^{\circ}$
[2 marks]
\qquad
\qquad
\qquad
\qquad

Answer \qquad

8 Solve $\sin x=-0.17 \quad$ for $0^{\circ} \leq x \leq 360^{\circ}$

Answer

9 Solve $\tan x=-0.4$ for $0^{\circ} \leq x \leq 360^{\circ}$
[2 marks]
\qquad
\qquad
\qquad
\qquad

Answer

10 Solve $3 \cos x=1 \quad$ for $0^{\circ} \leq x \leq 360^{\circ}$

Answer \qquad

11 Solve $4 \tan x=5 \quad$ for $0^{\circ} \leq x \leq 360^{\circ}$

Answer

12 Solve $3-\sin x=3.2 \quad$ for $0^{\circ} \leq x \leq 360^{\circ}$
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

13
Solve $\quad \cos ^{2} x=0.09 \quad$ for $0^{\circ} \leq x \leq 360^{\circ}$
[4 marks]

Answer

14
Solve $\quad 3 \tan ^{2} x=12$ for $0^{\circ} \leq x \leq 360^{\circ}$

Answer all questions in the spaces provided.
\qquad
\qquad
\qquad
\qquad

2
Show that $2 \sin ^{2} \theta \tan \theta+2 \cos \theta \sin \theta \equiv 2 \tan \theta$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 Show that $\frac{\sin ^{3} \theta}{\tan \theta}+\cos ^{3} \theta \equiv \cos \theta$
\qquad
\qquad
\qquad
\qquad L
\qquad

$$
4 \text { Show that } \tan \theta+\cos \theta+\sin \theta \tan \theta \equiv \frac{1+\sin \theta}{\cos \theta}
$$

5 Show that $\frac{2 \sin ^{2} \theta+\sin ^{2} \theta \cos \theta}{\sin \theta \cos \theta} \equiv 2 \tan \theta+\sin \theta$
\qquad —
\qquad
\qquad
\qquad
\qquad

6 Show that $8-3 \sin \theta \cos \theta \tan \theta$ can be written in the form $a \cos ^{2} \theta+b \quad$ where a and b are integers.
\qquad
\qquad $\xrightarrow{ }$
\qquad \longrightarrow
\qquad

7 Show that $\frac{1+3 \sin \theta}{\sin \theta}-\frac{\sin \theta}{\tan ^{2} \theta} \equiv \sin \theta+3$
[4 marks]

8 Show that $\frac{(\sin \theta+1)(\sin \theta-1)}{\cos \theta} \equiv-\cos \theta$
\qquad — L
\qquad — \longrightarrow工
\qquad —

9
9 Show that $(1+\sin \theta)^{2}+(1+\cos \theta)^{2}-2 \sin \theta \equiv 3+2 \cos \theta$
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10 Show that $\frac{\sin \theta \cos \theta+\cos \theta}{\cos ^{2} \theta}-\sin \theta \tan \theta \equiv \cos \theta+\tan \theta$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11 Show that $\frac{2 \sin \theta \cos \theta+1}{\cos ^{2} \theta} \equiv(1+\tan \theta)^{2}$
\qquad

Answer all questions in the spaces provided.

1 Solve $2 \cos ^{2} \theta=\cos \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$

Answer

2 Solve $3 \tan ^{2} \theta=2 \tan \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$

3 Solve $\sin ^{3} \theta=\sin \theta \quad$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad

Answer

4 Solve $\frac{\sin \theta}{2}=\frac{\cos \theta}{5}$ for $0^{\circ} \leq \theta \leq 360^{\circ}$

Answer

5
Solve $\tan ^{2} \theta=\tan \theta+6 \quad$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
[4 marks]

Answer

6
Solve $4 \sin ^{2} \theta+3=7 \sin \theta \quad$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
[4 marks]

Answer

7
Solve $2 \tan ^{2} \theta=11 \tan \theta-5$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
[4 marks]

Answer

8
Solve $2 \cos ^{2} \theta=7 \cos \theta-3$ for $0^{\circ} \leq \theta \leq 360^{\circ}$

Answer

9 (a) Show that $5 \cos ^{2} \theta-4 \equiv 1-5 \sin ^{2} \theta$

9 (b) Hence, solve $5 \cos ^{2} \theta-4=4 \sin \theta \quad$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

10(a) Show that $\frac{4 \sin \theta-3 \cos \theta}{\cos \theta} \equiv 4 \tan \theta-3$
\qquad L
\qquad

10 (b) Hence solve $\tan ^{2} \theta \cos \theta=4 \sin \theta-3 \cos \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

