$14^{1 t}$

Trigonometric Identities

Revise this topic

Answer all questions in the spaces provided.
\qquad
\qquad
\qquad
\qquad

2
Show that $2 \sin ^{2} \theta \tan \theta+2 \cos \theta \sin \theta \equiv 2 \tan \theta$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 Show that $\frac{\sin ^{3} \theta}{\tan \theta}+\cos ^{3} \theta \equiv \cos \theta$
\qquad
\qquad
\qquad
\qquad L
\qquad

$$
4 \text { Show that } \tan \theta+\cos \theta+\sin \theta \tan \theta \equiv \frac{1+\sin \theta}{\cos \theta}
$$

5 Show that $\frac{2 \sin ^{2} \theta+\sin ^{2} \theta \cos \theta}{\sin \theta \cos \theta} \equiv 2 \tan \theta+\sin \theta$
\qquad —
\qquad
\qquad
\qquad
\qquad

6 Show that $8-3 \sin \theta \cos \theta \tan \theta$ can be written in the form $a \cos ^{2} \theta+b \quad$ where a and b are integers.
\qquad
\qquad $\xrightarrow{ }$
\qquad \longrightarrow
\qquad

7 Show that $\frac{1+3 \sin \theta}{\sin \theta}-\frac{\sin \theta}{\tan ^{2} \theta} \equiv \sin \theta+3$
[4 marks]

8 Show that $\frac{(\sin \theta+1)(\sin \theta-1)}{\cos \theta} \equiv-\cos \theta$
\qquad — L
\qquad — \longrightarrow工
\qquad —

9
9 Show that $(1+\sin \theta)^{2}+(1+\cos \theta)^{2}-2 \sin \theta \equiv 3+2 \cos \theta$
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10 Show that $\frac{\sin \theta \cos \theta+\cos \theta}{\cos ^{2} \theta}-\sin \theta \tan \theta \equiv \cos \theta+\tan \theta$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11 Show that $\frac{2 \sin \theta \cos \theta+1}{\cos ^{2} \theta} \equiv(1+\tan \theta)^{2}$
\qquad

