Differentiation
 (Perimeter/Area/Volume Problems)

Revise this topic

Ot

縣 KCheck your work

This booklet features original exam style questions designed by me. They do not feature in past papers but are good practice for your exams.

The content is designed to reflect the style of the AQA Level 2 Certificate in Further Maths. It may not be suitable for other courses.
© 1stclassmaths

Answer all questions in the spaces provided.

1 This shape is made from two rectangles.
All dimensions are in centimetres.
$25 x$

The perimeter of the shape is 298 cm
1 (a) Show that $y=149-33 x$
\qquad
\qquad
\qquad
\qquad
\qquad

The area of the shape is $A \mathrm{~cm}^{2}$
1 (b) Show that $A=3725 x-745 x^{2}$
[2 marks]

1 (c) Use differentiation to work out the maximum value of A as x varies. [3 marks]
\qquad

Answer

Turn over

2 This shape is made from a square and a rectangle.
All dimensions are in centimetres.

Not drawn accurately

The perimeter of the shape is 220 cm
2 (a) Show that $y=110-10 x$

The area of the shape is $A \mathrm{~cm}^{2}$
2 (b) Show that $A=660 x-44 x^{2}$

2 (c) Use differentiation to work out the maximum value of A as x varies. [3 marks]

Answer

Turn over

3 This lengths of a cuboid are $5 \mathrm{~cm}, 2 x \mathrm{~cm}$ and $(9-5 x) \mathrm{cm}$

3 (a) Show that the volume of the cuboid, V, is given by $V=90 x-50 x^{2}$
\qquad
\qquad
\qquad
\qquad
\qquad

3 (b) Use differentiation to work out the maximum value of V as x varies. [3 marks]
\qquad
\qquad
\qquad \longrightarrow
\qquad -
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

4 Here is a triangular prism.

Not drawn accurately

4 (a) Show that the volume of the prism, V, is given by $V=54 x-6 x^{2}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4 (b) Use differentiation to work out the maximum value of V as x varies.
\qquad

Answer

