

www.1stclassmaths.com

© 2024 1stclassmaths

2 The following table summarises heights, *y* cm to the nearest centimetre, of the female athletes at an athletics club.

Height (y cm)	$160 \le y < 170$	$170 \le y < 180$	$180 \le y < 190$	$190 \le y < 200$
Number of athletes (f)	3	7	7	8
(a) State the modal class	for the heights of	the female athletes.		(1)
(b) Work out the class in	terval containing th	he median female h	eight.	(1)
(c) Work out an estimate	for the mean heig	ht of the female ath	letes.	(2)
For the heights, $x \text{ cm}$ to the	he nearest centime	tre, of the male athl	etes at the club	
$\sum x = 6615$	<i>i</i> = 35			
(d) Use this data, and you male and female athle	· ·		ean height of all of	the (2)
a) $190 \le y < 200$				
b) 3 + 7 + 7 + 8 = 25				
$25 + 1 = 13^{\text{th}}$ value	Answer: $180 \le y \le y$	< 190		
2				
$\overline{y} = (165 \times 3) + (175 \times 3)$	$7) + (185 \times 7) +$	195 × 8)		
	7 + 7 + 8			
$\overline{y} = 183 \text{ cm}$				
l) $183 \times 25 = 4575$ (total h	eight of all female	athletes)		
4575 + 6615 = 11190 (to	_		etes)	
$11190 \div 60 = 186.5$ cm				
			al for Question 2	• < • • •

🕨 🗙 🛃 🞯 @1stclassmaths

3 The following tables summarises the annual salaries, $\pounds S$ to the nearest pound, of teachers at a multi-academy trust.

Annual Salary (£S)	Frequency (f)
$30,000 \le S < 50,000$	84
$50,000 \le S < 70,000$	18
$70,000 \le S < 90,000$	9
$90,000 \le S < 110,000$	3
$110,000 \le S < 200,000$	1

(a) Work out the class interval containing the median annual salary.	(1)
(b) Work out an estimate, to the nearest pound, for the mean annual salary all of the staff.	(1)
(c) Explain why your answer to part (b) is an estimate.	(1)
It is found that the CEO of the multi-academy trust has an annual salary of £195,000 (yes reall	V)
It is found that the CEO of the multi-academy trust has an annual safary of £195,000 (yes real	y)
(d) Explain what effect, if any, will this information have on	
(i) your answer to part (a)(ii) your answer to part (b)	(2)
(a) $84 + 18 + 9 + 3 + 1 = 115$	
$115 + 1 = 58^{\text{th}}$ value Answer: $30,000 \le S < 50,000$	
2	
(b) $\overline{S} = (40000 \times 84) + (60000 \times 18) + (80000 \times 9) + (10000 \times 3) + (155000 \times 1)$	
84 + 18 + 9 + 3 + 1	
$\overline{S} = \pounds 48,826$	
(c) We do not know any of the actual salaries.	
We have assumed each of the salaries in each class is the midpoint of that class.	
(d) (i) It will have no effect on the interval containing the median.	
The median is not affected by extreme values	
(d) (ii) It will increase the estimate of the mean.	
In the original calculation £155,000 was used at the midpoint for the final class interval	
but we know this salary is actually much more than this at $\pounds 195,000$.	
(Total for Question 3 is 5 marks)	
3	

www.1stclassmaths.com

_

© 2024 1stclassmaths

4 On Monday 12 students were late to school. The number of minutes late *L*, to the nearest minute, of the first 8 students are shown below.

Student	A	B	C	D	E	F	G	H
Lateness (L minutes)	1	2	3	3	4	6	8	9
(a) State the modal number	er of mir	utes late	for the fi	rst 8 stud	lents.			(1
						4.0		
(b) Work out the median r								(1
(c) Work out the mean nu	mber of	minutes	late for th	ne first 8	students			(1
Any student who is 10 or r On Monday 4 students rec					ion.			
The mean number of minu					•			
(d) Work out the mean of n	minutes	late for th	ne 4 stude	ents who	received	a detent	ion on M	londay. (2
3 minutes								
) 3.5 minutes (the 4.5^{th} va	alue)							
$\sum L = 1 + 2 + 3 + 3 + 3$	4.6.	8 1 0						
$\frac{2L}{n} = \frac{1+2+3+3+3}{8}$		0 + 9						
= 4.5 minutes								
$12 \times 10.5 = 126$ (total min	nutes lat	e for all	12 studen	its)				
$8 \times 4.5 = 36$ (total minute				1	<u>``</u>			
126 - 36 = 90 (total minu	te late fo	or student	ts with a	detention	1)			
$90 \div 4 = 22.5$ minutes								
				(To	otal for (Question	1 4 is 5 m	arks)

	Number of Fillings	0	1	2	3	4	5	6
	Frequency (f)	7	4	3	3	0	2	1
(a)	State the modal number of	fillings.						(1)
(b)	Work out the median num	ber of fill	ings.					(1)
(c)	Work out the mean number	er of fillin	gs.					(2)
Ar	other patient is added to the	sample.	They hav	e 2 filling	ţs.			
(d)	State what affect, if any, th	is will ha	ve on					
	(i) your answer to part (a)							
	(ii) your answer to part (b)(iii) your answer to part (c)							(3)
ı) ()	fillings.							
) 1	filling (the 10.5 th value)							
x \overline{x}	$f = (0 \times 7) + (1 \times 4) + (2 \times 3)$				2) + (6 ×	1)		
	7 + 4	+ 3 + 3 +	-0+2+1	1				
\overline{x}	$\overline{c} = 1.75$ fillings							
) The mode will remain unc i) The median will now be t		luo whic	h will stil	lbo 1 fil	ling (So	modion is	unchanged
	ii) The mean will increase a			ii wiii stii		iiig. (50)		unenangeu
	,							

6 Mark's internet provider claims that the average internet speed that he will receive will be at least 100 Mbps.

Mark tests his internet speed *S*, to the nearest Mbps, at 12 different times during the day. The table below summarises the results.

	Internet Speed (S Mbps)	90-99	100-109	110-119	120-129	
	Frequency (f)	4	6	1	1	
	Vork out an estimate of the mean i Give your answer to 4 significant f				(2	2)
	xplain why your answer to part (a	-	imate		(1	
		·		mat maxida		
	oes your answer to part (a) suppor		·		· (1	L)
Mark	works out the exact value for the	mean using hi	s recorded va	lues.		
· · ·	it possible that Mark's mean interview a reason for your answer.	rnet speed is be	elow 100 Mbj	ps?	(2	2)
a) $\overline{S} =$	$(94.5 \times 4) + (104.5 \times 6) + (114.5)$	5 × 1) + (124.5	× 1)			
	4 + 6 + 1 + 1					
$\overline{S} = 1$	103.7 Mbps					
(b) We	do not know any of the actual inte	ernet speeds.				
We	have assumed each of the internet	speeds in each	n class is the r	nidpoint of th	nat class.	
(c) Yes	as 103.7 > 100					
(d) Yes	Since we don't know the actual	values the spee	eds in each cla	ass could be a	is low as	
89.5 MI	bps for (90-99), 99.5 Mbps for (10	00-109), 109.5	Mbps for (11	0-119), 119.:	5 Mbps for (1	20-129
If we a	assume all values in each class are	the lowest pos	sible value th	en recalculat	e the mean w	e get
$\overline{S} = (8)$	$(39.5 \times 4) + (99.5 \times 6) + (109.5 \times 10^{-5})$	$(119.5 \times 1) + (119.5 \times 1)$)			
	4 + 6 + 1 + 1					
$\overline{S} = 98$.7 Mbps < 100 Mbps					

7 The speeds, *S* mph to the nearest mph, of some vehicles on a motorway are recorded.

Lane of Motorway	Lane 1	Lane 2	Lane 3
Number of Vehicles	124	148	165
Mean Speed (mph) 55.2		67.8	71.3

Work out the mean speed of all vehicles across all lanes of the motorway. Give your answer to 3 significant figures.

 $124 \times 55.2 = 6844.8$

 $148 \times 67.8 = 10034.4$

 $165 \times 71.3 = 11764.5$

6844.8 + 10034.4 + 11764.5 = 28643.7

124 + 148 + 165 = 437

 $28643.7 \div 437 = 65.5$ mph

(Total for Question 7 is 2 marks)

(2)

(1)

8 The following tables summarises the ages, A years, of people taking a driving test at a test centre.

Age (A years)	10-19	20-29	30-39	40-49	50-59	60-69
Frequency (f)	21	4	1	2	1	1

(a) Work out the class interval containing the median age.

(b) Work out an estimate for the mean age of the people taking a driving test at the test centre. (2)

The minimum age for taking a driving test is 17 years old.

(c) Comment on whether the true mean age of the drivers at the test centre likely to be different to your answer to part (b). Give a reason for your answer. (1)

(a) 10-19 (the 15.5th value)

(b) $\overline{A} = (15 \times 21) + (25 \times 4) + (35 \times 1) + (45 \times 2) + (55 \times 1) + (65 \times 1)$

21 + 4 + 1 + 2 + 1 + 1

 $\overline{A} = 22$ years

(c) In our estimate we assumed all drivers in the 10-19 category were 15 years old.

Since they must be at least 17 the true mean is likely to be higher than our answer in part (b)

(Total for Question 8 is 4 marks)

www.1stclassmaths.com

7

1st

© 2024 1stclassmaths